52 research outputs found

    Optical Parametric Technology for Methane Measurements

    Get PDF
    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb)

    Detecting Methane From Leaking Pipelines and as Greenhouse Gas in the Atmosphere

    Get PDF
    Laser remote sensing measurements of trace gases from orbit can provide unprecedented information about important planetary science and answer critical questions about planetary atmospheres. Methane (CH4) is the second most important anthropogenically produced greenhouse gas. Though its atmospheric abundance is much less than that of CO2 (1.78 ppm vs. 380 ppm), it has much larger greenhouse heating potential. CH4 also contributes to pollution in the lower atmosphere through chemical reactions, leading to ozone production. Atmospheric CH4 concentrations have been increasing as a result of increased fossil fuel production, rice farming, livestock, and landfills. Natural sources of CH4 include wetlands, wild fires, and termites, and perhaps other unknown sources. Important sinks for CH4 include non-saturated soils and oxidation by hydroxyl radicals in the atmosphere. Remotely measuring CH4 and other biogenic molecules (such as ethane and formaldehyde) on Mars also has important implications on the existence of life on Mars. Measuring CH4 at very low (ppb) concentrations from orbit will dramatically improve the sensitivity and spatial resolution in the search for CH4 vents and sub-surface life on other planets. A capability has been developed using lasers and spectroscopic detection techniques for the remote measurements of trace gases in open paths. Detection of CH4, CO2, H2O, and CO in absorption cells and in open paths, both in the mid- IR and near-IR region, has been demonstrated using an Optical Parametric Amplifier laser transmitter developed at GSFC. With this transmitter, it would be possible to develop a remote sensing methane instrument. CH4 detection also has very important commercial applications. Pipeline leak detection from an aircraft or a helicopter can significantly reduce cost, response time, and pinpoint the location. The main advantage is the ability to rapidly detect CH4 leaks remotely. This is extremely important for the petrochemical industry. This capability can be used in manned or unmanned airborne platforms for the detection of leaks in pipelines and other areas of interest where a CH4 leak is suspected

    Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    Get PDF
    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65,2.2,3.4 and 7.8 micron. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed laser near 1651 nm from a wavelength tunable diode laser. Incident photons from the pump laser pulse are converted into two photons, with one at the wavelength of the injection seeder. The wavelength of the OPA output is tuned via the wavelength of diode laser. Our laser is tunable, operates near 1651 nm and generates approximately 4 uJ/pulse at 6 KHz. We vary the emission wavelengths within this band by tuning the diode laser's wavelength. We have used this OPA transmitter to make measurements of CH4 at various pressures in a gas cell and over open outdoor horizontal paths. We have measured the lineshape of methane in a 6 cm long cell at various energy levels with this transmitter, with excellent agreement with the lineshape calculated by HITRAN. We have also measured the absorption lineshape of atmospheric methane in an open 3 km outdoor path. The agreement between the measurements and HITRAN, for 1746 ppb and 760 Torr was quite good. We have also made pulsed two wavelength lidar measurements of methane line absorption in the column to a tower at 1.5 km range. These used on- and off-line wavelengths of 1650.957 nm, and 1651.072 nm, and a 20 cm diameter receiver telescope with an infrared PMT detector. The absorption of the on-line photons was 30%. The methane column absorption was estimated via HITRAN, and was in good agreement with the expected methane absorption for a concentration of 1750 ppm. Finally we have calculated the measurement performance of an airborne methane lidar using this transmitter, as well as the energy and telescope scaling needed for a lidar for space. These results, and more details of our experiments will be described in the presentation

    Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    Get PDF
    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the US Department of Energy's (DOE) SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The increasing CO2 line absorptions with altitudes were evident and comparison with in-situ measurements showed agreements to 6 ppm. In spring 2009 we improved the aircraft's nadir window and during July and August we made 9 additional 2 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surface types in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay in North Carolina and eastern Virginia. Strong laser signals and clear CO2 line shapes were observed at all altitudes, and some measurements were made through thin clouds. The flights over the ARM site were underflown with in-situ measurements made from the DOE Cessna. Analysis shows that the average signal levels follow predicted values, the altimetry measurements had an uncertainty of about 4 m, and that the average optical line depths follow the number density calculated from in-situ sensor readings. The Oklahoma and east coast flights were coordinated with a LaRC/ITT CO2 lidar on the LaRC UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. More details of the flights, measurements, analysis and scaling to space will be described in the presentation

    A Hollow-Waveguide Gas Correlation Radiometer for Ultra-Precise Column Measurements of Formaldehyde on Mars

    Get PDF
    We present preliminary results in the development of a miniaturized gas correlation radiometer that implements a hollow-core optical fiber (hollow waveguide) gas correlation cell. The substantial reduction in mass and volume of the gas correlation cell makes this technology appropriate for an orbital mission -- capable of pinpointing sources of trace gases in the Martian atmosphere. Here we demonstrate a formaldehyde (H2CO) sensor and report a detection limit equivalent to approximately 30 ppb in the Martian atmosphere. The relative simplicity of the technique allows it to be expanded to measure a range of atmospheric trace gases of interest on Mars such as methane (CH4), water vapour (H2O), deuterated water vapour (HDO), and methanol (CH3OH). Performance of a formaldehyde instrument in a Mars orbit has been simulated assuming a 3 meter long, 1000 micron inner diameter hollow-core fiber gas correlation cell, a 92.8 degree sun-synchronous orbit from 400 km with a horizontal sampling scale of 10 km x 10 km. Initial results indicate that for one second of averaging, a detection limit of 1 ppb is possible

    Development of Optical Parametric Amplifier for Lidar Measurements of Trace Gases on Earth and Mars

    Get PDF
    Trace gases in planetary atmospheres offer important clues as to the origins of the planet's hydrology, geology. atmosphere. and potential for biology. Wc report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OP A output light is single frequency with high spectral purity and is widely tunable both at 1600 nm and 3300 nm with an optical-optical conversion efficiency of approximately 40%. We demonstrated open-path atmospheric measurements ofCH4 (3291 nm and 1651 nm). CO2 (1573 nm), H20 (1652 nm) with this laser source

    Target Assembly to Check Boresight Alignment of Active Sensors

    Get PDF
    A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments

    Ground Demonstration of Planetary Gas Lidar Based on Optical Parametric Amplifier

    Get PDF
    We report on the development effort of a nanosecond-pulsed optical parametric amplifier (OPA) for remote trace gas measurements for Mars and Earth. The OPA output has high spectral purity and is widely tunable both at near-infrared and mid-infrared wavelengths, with an optical-optica1 conversion efficiency of up to approx 39 %. Using this laser source, we demonstrated open-path measurements of CH4 (3291 nm and 1651 nm), CO2 (1573 nm), H2O (1652 nm), and CO (4764 nm) on the ground. The simplicity, tunability. and power scalability of the OPA make it a strong candidate for general planetary lidar instruments, which will offer important information on the origins of the planet's geology, atmosphere, and potential for biology

    Design of a Direct-Detection Wind and Aerosol Lidar for Mars Orbit

    Get PDF
    The present knowledge of the Mars atmosphere is greatly limited by a lack of global measurements of winds and aerosols. Hence, measurements of height-resolved wind and aerosol profiles are a priority for new Mars orbiting missions. We have designed a direct-detection lidar (MARLI) to provide global measurements of dust, winds and water ice profiles from Mars orbit. From a 400-km polar orbit, the instrument is designed to provide wind and backscatter measurements with a vertical resolution of 2 km and with resolution of 2 in latitude along track. The instrument uses a single-frequency, seeded Nd:YAG laser that emits 4 mJ pulses at 1064 nm at a 250 Hz pulse rate. The receiver utilizes a 50-cm diameter telescope and a double edge Fabry-Prot etalon as a frequency discriminator to measure the Doppler shift of the aerosol-backscatter profiles. The receiver also includes a polarization-sensitive channel to detect the cross-polarized backscatter profiles from water ice. The receiver uses a sensitive 4 4 pixel HgCdTe avalanche photodiode array as a detector for all signals. Here we describe the measurement concept, instrument design, and calculate its performance for several cases of Mars atmospheric conditions. The calculations show that under a range of atmospheric conditions MARLI is capable of measuring wind speed profiles with random error of 24 m/s within the first three scale heights, enabling vertically resolved mapping of transport processes in this important region of the atmosphere

    Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    Get PDF
    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of ~1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is ~20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and determines the atmospheric pressure by minimizing the error between the observations and model. We first demonstrated our airborne lidar during flights during summer 2010. We made several improvements and made measurements during the Ascends flights during July 2011. More information about the technique, lidar instrument, airborne measurements, and pressure estimates will be described in the presentation
    • …
    corecore